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Applications of Diesel Reformers in 
Transportation Systems
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Reforming of diesel fuel can have simultaneous vehicle applications:
• SECA application: reforming of diesel fuel for Transportation SOFC / APU
• Reductant to catalyze NOx reduction, regeneration of particulate traps
• Hydrogen addition for high engine EGR 
• Fast light-off of catalytic convertor

Our goal is to provide kinetics, carbon formation analysis, operating considerations, 
catalyst characterization and evaluation, design and models to SECA developers.



Hydrogen and Fuel Cell Institute

Diesel Fuel Processing for APUs
Technical Issues

Diesel fuel is prone to pyrolysis upon vaporization
• Fuel/Air/Steam mixing
• Direct fuel injection
Diesel fuel is difficult to reform
• Reforming kinetics slow
• Catalyst deactivation

– Fuel sulfur content
– Minimal hydrocarbon slip
– Carbon formation and deposition
– High temperatures lead to catalyst sintering

Water availability is minimal for transportation APUs
• Operation is dictated by system integration and water content

– water suppresses carbon formation
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Diesel Reforming 
Objectives and Approach 

Objectives: Develop technology suitable for onboard reforming of diesel
• Research fundamentals (kinetics, reaction rates, models, fuel mixing)
• Quantify operation (recycle ratio, catalyst sintering, carbon formation)

Approach: Examine catalytic partial oxidation and steam reforming
• Modeling

– Carbon formation equilibrium
– Reformer operation with anode recycle

• Experimental
– Carbon formation 
– Adiabatic reformer operation

• Anode recycle simulation
• Direct diesel fuel injection, SOFC anode and air mixing
• Catalyst temperature profiles, evaluation, durability
• Hydrocarbon breakthrough

– Isothermal reforming and carbon formation measurements
• Catalyst evaluation, activity measurements
• Carbon formation rate development
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Diesel Reforming 
Measurements and Modeling

Modeling
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Iso-thermal Microcatalyst

Iso-thermal system
• Measure kinetics
• Steam reforming / POx
• Light-off
• Carbon formation
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Direct Injection Fuel Nozzle Operation
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Simulated Anode 
Exhaust Recycle 

(H2, CO, CO2, N2, H2O, 
HCs)
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To avoid carbon formation during 
vaporization requires direct fuel 
injection
Directly inject fuel to reforming 
catalyst

• Commercial nozzle, control fuel 
pressure for fuel flow (~ 80 psi)

• Air / anode recycle (H2 / N2) distribute 
in annulus around fuel line / nozzle

Experimental results
• Operated successfully at steady state

– Minimum fuel flow dictated by fuel 
distribution from nozzle

• Requires control of fuel/air preheat, 
limiting preheat (~ < 180 oC)

– Prevents fuel vaporization/particulate 
formation
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SOFC Anode Recycle Modeling
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Axial Temperature Profiles 
during Diesel Reforming
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Higher recycle ratios move oxidation downstream in reformer
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Adiabatic Reformer Catalyst Surface Area
Axial and Radial Profile

BET Surface Area Distribution
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Catalyst Sintering Measurements
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Carbon Formation Issues
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Avoid fuel processor degradation due to carbon formation
• Carbon formation can reduce catalyst activity, system pressure drop
• Operation in non-equilibrium carbon formation regions
• Low water content available for transportation diesel reforming
• Rich operation - Cannot avoid favorable carbon equilibrium regions

Catalysts
• Various catalysts more/less prone to carbon formation

Diesel fuels
• Carbon formation due to pyrolysis upon vaporization



Hydrogen and Fuel Cell Institute

Carbon Formation from Low-Sulfur Swedish and 
Commercial Diesel Fuel (iso-thermal)
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Adiabatic Reactor 
Carbon Formation Measurements

AutoThermal Reforming
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Carbon Formation vs. recycle ratio
(adiabatic ATR reforming)
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Sulfur Effect on Diesel Reforming
Sufur content in tested fuels
Odorless Kerosene N.D.
Commercial Diesel 314 ± 17
Swedish Diesel N.D.
Kerosene 149 ± 16

Added 300 ppm S (by wt% S)
From Thiophene and 
DiBenzoThiophene (DBT) to Low-
Sulfur Swedish diesel and dodecane 
to examine effect on reforming fuel 
conversion and carbon formation.

Sulfur compounds
Thiophene

S

Dibenzothiophene

S
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Sulfur effect on Carbon formation
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Carbon Formation Analysis and Location
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(TGA) Thermal Gravimetric Analysis 
of catalyst  after carbon formation 
measurements in isothermal reactor

Carbon is not typically ‘bound’ to catalyst surface 
(for noble metal catalysts / with oxide supports)
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Carbon Formation Rate
Activation energy

for carbon formation:
rcarbon = k exp(-Ea/RT)

Isothermal steam reforming (S/C = 1.0)
commercial diesel 86.8 kJ/mol
low-S diesel 134.2 kJ/mol

Isothermal ATR (O/C = 1.0, S/C = 0.34)
(Simulating 35% recycle)

commercial diesel 97.9 kJ/mol
low-S diesel 72.4 kJ/mol

Iso-thermal ATR
0.13% Low-S Diesel
0.12% Commercial Diesel

Iso-thermal SR
0.22% Low-S Diesel
0.21% Commercial Diesel

Adiabatic ATR
0.03% Low-S Diesel
0.09% Commercial Diesel

Carbon from fuel that ends 
up as carbon particulate

Low –S Diesel ATR scales to
3.1 kg Carbon (10,000 hrs)
12.4 kg Carbon (40,000 hrs)

Literature values for carbon formation of 118 kJ/mol
(CO2 reforming of CH4 over Ni/Al2O3 catalysts) 
Wang, S., Lu, G., Energy & Fuels 1998, 12, 1235.
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Nanocomposite Ni Catalyst Work
• Initial success usingNi/YSZ and Ni/ZrO2
nanocomposite catalysts (separate project)

• Freeze-drying process to prepare nanocomposites:
• Ultrasonic nozzle makes aerosol of liquid droplets
• Liquid droplets frozen in LN2 and collected
• Solvent removed by sublimation
• Obtain low density reactive precursor powder
• Catalyst activated by calcining and reduction After 

activation
0.10  g/ml

Initial Catalyst 
Precursor
0.018 g/mlParticle Sizes by XRD

42 nm. Ni/ZrO2
Black Ni/ZrO2 141 Å 
Grey  Ni/ZrO2 206 Å
Ni/YSZ 60 Å

Initial development of this work funded by LANL LDRD
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Ni Nano-composite Stability During 
CH4 Reforming

Activity of Ni/ZrO2 nanocomposite is 
comparable to that of Ni
Nanocomposite Ni/ZrO2 is stable over 
time during CH4 Reforming
Ni degraded rapidly at 800 oC due to 
carbon deposition

Nanocomposite nickel catalysts showed better durability 
than nickel during CH4 Reforming
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Carbon Formation During Diesel 
Reforming over Nickel Catalysts
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Amorphous Carbon Formation Modeling
Carbon Gibb’s Free Energies

Computed data with Least Squares fit 
for C2

* amorphous carbon
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C1

* amorphous carbon

The Gibb’s Free Energies Plotted were computed from measured K-
values from carbon formation, with the definition:

∆G = -RTln(K)
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Carbon Heat Capacity Determination
Heat capacities for C2

* amorphous 
carbon from

Gibb’s Free Energy data
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Carbon Enthalpy with Temperature
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• Carbon Enthalpies show carbon thermodynamics not consistent
• Different thermodynamic carbon species are formed



Summary/Findings
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Direct fuel injection via fuel nozzle
• Control of fuel temperature critical (Prevent fuel vaporization, fuel pyrolysis)
• Turndown can be limited by the nozzle fuel distribution

Reformer operation with SOFC anode recycle
• High adiabatic temperatures at low recycle rates (Leads to catalyst sintering)
• Increasing recycle rates moves oxidation downstream in reformer
• Operation at 30 – 40 % recycle rate has shown most reasonable results

Nanocomposite nickel catalysts
• Showed promising results during CH4 reforming
• Ni/ZrO2 not as promising for diesel reforming

Carbon Formation
• Addition of Sulfur (thiophene and DBT) do no increase carbon formation
• Carbon formation modeling shows at least two different thermodynamic 

types of carbon
• Higher carbon formation with commercial diesel than low-S diesel (adiabatic)
• Carbon formation primarily not adherent to catalyst surface

Catalyst Durability
• Catalyst loss in surface area during reforming and with temperature



Future Activities
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Carbon formation
• Define diesel components contributing to high carbon formation rates
• Examine additive effects on carbon formation (EtOH)
• Stand-alone startup & consideration to avoid C formation
• Develop carbon removal/catalyst regeneration schemes

Catalyst sintering and deactivation
• Characterize durability – catalyst sintering
• Develop reformer operational profiles that limit catalyst sintering
• Stabilize active catalyst particles

Durability and hydrocarbon breakthrough on SOFC
Modeling (Improve carbon formation model)

– Improve robustness of code, develop ‘user-friendly’ interface
• Examine system effects of anode recycle 
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